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Summary. Relationships were studied theoretically be- 
tween phenotypic values of selection candidates ('par- 
ents') and economic worth of the 'offspring' that would 
belong to production populations. The candidates could 
include individuals, crosses or clones, and the offspring 
could be produced either sexually or vegetatively. Cases 
considered included: three systems for generating pro- 
duction populations [clonal propagation, pair(full-sib)- 
crosses and half-sib crosses]; three economic-worth (prof- 
it) functions for individual offspring (linear, intermediate 
optimum, acceptable versus cull); and independently 
varying heritabilities for both parents and offspring. The 
heritabilities were varied in the model against a back- 
ground of fixed genetic variance. Parental values were 
considered in terms of phenotypic standard deviations 
from the population mean, assuming normality. Lower 
heritabilities and, to a lesser extent, genetic segregation 
severely damped down the non-linearities of economic 
worth in relation to measured parental values, such that 
the linear weightings for traits in a selection index should 
usually be a good approximation, provided the profit 
function for individual offspring is monotonic. The eco- 
nomic advantages of corrective mating within a select 
population may be minimal if both heritabilities are low 
and the profit functions apply to individual offspring. The 
economic advantages accruing from genetic uniformity of 
clones (or crosses between inbreds) in conjunction with 
non-linear profit functions are strongly dependent on 
achieving high broad-sense heritabilites, particularly in 
the offspring (production population). 
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Introduction 

A common assumption in plant and animal breeding is 
that economic-worth (profit) functions are linear; in other 

words, that the economic gain from a given phenotypic 
difference in the value for a metric trait is constant over 
the full range of variation. This assumption is fully in- 
voked in an unrestricted Smith-Hazel selection index 
(Baker 1986; Wricke and Weber 1986) containing linear 
functions of the phenotypic values for the various traits 
involved. 

In practice, there are obvious departures from the 
linear relationship within the commercial (or 'produc- 
tion') population. In some cases technical specifications 
impose thresholds of acceptability, e.g. back fat thickness 
for carcass grades or knot diameters for sawlog grades, 
which will mean a stepwise function in relation to pheno- 
typic value. In many, less extreme cases there may be 
curvilinear 'law-of-diminishing-returns' relationships. 
These situations are implicitly recognised by certain re- 
strictions (Baker 1986) that have been devised for Smith- 
Hazel selection indices, e.g.: restrictions to keep un- 
changed the mean values for one or more traits 
(Kempthorne and Nordskog 1959); restrictions keeping 
gains in individual traits to specified levels per unit selec- 
tion intensity (Tallis 1962); or restrictions that extend 
the Tallis restrictions to proportionality of gains among 
all the traits under consideration (Pesek and Baker 1969). 
A less sophisticated recognition of non-linearity is em- 
bodied in independent culling levels. Non-linear profit 
functions are also part of the implicit rationale for 'cor- 
rective mating' (Allaire 1980) between parents. However, 
the efficacy of these various devices for accommodating 
non-linear profit functions to maximum advantage seems 
to have received limited study. 

Another type of non-linearity is where any departure 
from crop or flock uniformity is undesirable per se, or 
where there is a definite optimum within the range of 
genotypic variation. This is extremely important for 
many cash crops where requirements for harvesting and 
processing demand minimal variability. Genetic segrega- 
tion, such as typically occurs within pair-crosses of out- 
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breeders can, of itself, introduce unacceptable variability. 
With  obligate sexual p ropaga t ion  a widespread response, 
by plant  breeders in particular,  has been to convert the 
organism to an inbreeder from an outbreeder.  Another  
response is to produce heterotic and uniform product ion 
populat ions  from crosses among inbred lines. Where veg- 
etative p ropaga t ion  is feasible, mass cultivation of clones 
becomes the classic option. 

Thus, three main issues that  arise from non-l inear 
profit functions are: (i) The extent to which non-lineari ty 
in relation to phenotypic value within the product ion 
popula t ion  invalidates a linear function of the metric 
values of the selections made. While Baker (1986) con- 
cluded that  "there is no really satisfactory way of address- 
ing the problem of non-l inear worth functions", he did 
not  examine how impor tant  the problem is in the first 
place. I toh and Yamada (1988) have documented alterna- 
tive non-l inear  index solutions, and have cited earlier 
studies where different workers drew varying conclusions 
as to whether non-l inear  index weightings are appropr i -  
ate. They did not, however, a t tempt  any synthesis to 
guide breeders as to when the complexities of non-l inear 
solutions should be addressed. (ii) The extent to which, 
and the circumstances in which, various departures from 
classical selection indices, viz. restrictions, independent  
culling levels and corrective mating, are likely to be effec- 
tive. (iii) The extent to which the theoretical advantages 
of genetic uniformity are realisable, if the uniformity can 

be achieved. 
Heritabili ty,  as influenced by uncontrol led environ- 

mental  ('noise') variat ion clearly has a major  bearing on 
all these questions. Such variation, if large, can encom- 
pass major  departures from linearity, and will thereby 
tend to damp down the expression of non-linearities in 
the economic value of crops or flocks produced from 
selections of varying phenotypes. This damping down of 
non-linearities is studied here to help answer the three 
questions. Cases considered involve: clonal systems ver- 
sus use of both  full-sib and half-sib families, types of profit 
function and a range of heritabilities both  in the candi- 
date popula t ion  from which selections are made and in 

the product ion populat ion.  

The Model 
Candidate ( 'parental ')  population 

Consider a large candidate population, with the following at- 
tributes: 
X =mean(=O)  
additive inheritance 
normal distribution 
panmixis 
x = phenotypic value of an individual candidate 
a~ = genotypic variance (fixed at unity) 
a z = phenotypic variance 

= k 2 2 (1) % Ihp 

h 2 = heritability of candidate values, which may include mea- 
surements on individuals, means in clonal tests, half-sib 
family means in progeny tests or fulI-sib family means 

= k ~ /o -~  

k = coefficient of relationship, e.g. i for clones, 0.5 for random 
full-sib families, 0.25 for random half-sib families 

x' = expected phenotypic value (parental value, clonal mean or 
half-sib progeny mean) of clone/parent X 

-- X / h  v (for a~ = 1) (2) 

x" = expected genotypic value of the phenotype X 

= X hp (3) 

X = phenotypic value, in standard deviations. 

Production ( 'of f@ring')  population 

For individual offspring (sexually produced progeny or clonal 
propagules) of a large number of unselected candidates (assum- 
ing same expression of genotypic effects as in candiate popula- 
tion and normality and a mean of zero): 

ho 2 = heritability 

= .~/~o ~ 

ao z = total phenotypic variance. 

For a class of candidates of phenotype X: 

y = individual phenotypic value 
35 = class mean 

,~ x" (see above) for large n (4) 
z = variance about O'y 

2 2 
= O'y, -~  O'y. 

@ = genotypic variance of clones/parents about 
@, = phenotypic variance within a clone/family 
n = number of clones, or families, in class. 

Now for n clones: 

2 2 2 ( n - - 1 ) / n = ( 1 - - h ~ ) ( n - - 1 ) / n ( f o r %  %, = a g ( 1 - h p )  2=1) (5) 

2 2 2 2 __ 2 (for o-0 2 = 1) %, = % / h  o - % - l /h  o - 1 (6) 
2 2 2 % ~ 1/h o - h p  for large n. (7) 

For n pair-cross (full-sib) families: 

%,2 ~gag2 (1 - h ~ )  ( n -  1)/n =(1 -hv  2) ( n -  1)/2n (for ag2 __ 1) (8) 
2 1 2  2 2 2 ~ .  2 * 2 1) (9) %,, = ( > ~ % ) + (%/ho - % ) = - 1/ho - ~ (for % = 

1 2 (_> ~ % denotes segregational variance, and reflects possi- 
ble departures from an additive genetic model, plus the 
fact that a 2 might be truncated by prior selection with 
respect to the base-population value) 

o.2y > 1/h2o_h2/2 for large n. (10) 

For n half-sib families, with select parents mated with base- 
population material: 

2 ~ 1  2 2 %, ~ Z % ( 1 - h , ) ( n - - 1 ) / n ' ~ ( l - h ~ ) ( n - 1 ) / 4 n ( f o r  a02=l) (11) 
2 ~>3  2 2 2 2 __ 2 1 %" = ( _  ~% ) + ( a j h o _ %  ) _  > l / h o _ a ( f o  r %_Z_l) (12) 

ay 2 > - -  1/h2o-h~/4 for large n. (13) 

Note: (1) A case n = 1 is equivalent to the case hp = 1. (2) For 
clones, h~ is necessarily a broad-sense heritability. For pair- 
crosses (or half-sib crosses), o -2 does not conform exactly to the y' 

2 2 specified function of hp. It is overestimated if hp is a broad-sense 
heritablity and underestimated if h 2 is a narrow-sense heritabil- 
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ity, the bias depending on the magmtude and make-up of non- 
additive gene effects. However, non-additive gene effects would 
contribute in a higher proportion to @, than would the additive 
gone effects. 

Profit functions 

The following profit functions (P = P(y)) were assumed for indi- 
viduals: 

(1) Linear 

P =cy+q (14) 

c is assumed to be 1/3 and q zero for purposes of illustration. As 
mentioned earlier, this embodies the classic assumption for an 
unresticted Smith-Hazel index. 

(2) 'Stepwise' 

for y<d, P=0;  for y>_d, P = I .  (15) 

This reflects an acceptability/cull threshold. The value for d was 
set arbitrarily at 0. 

(3) Normal distribution CNormal') 

1 p = _ _  e-(y ~)2/(2~) (16) 
. f ~  

Assuming d = 0 and a = 1, this simplifies to 

1 P =  = e y=/e. (17) 
x/2z 

This entails an intermediate optimum. With d = 0, any departure 
from the candidate population mean is adverse, but d could 
equal any x". The assumed value for a again is arbitrary, but the 
importance of departures from the optimum is reflected in cr ~. 

Among these three classes of profit functions, the numerical 
values of individual parameters are not intended to be compara- 
ble. 

Computation of economic worth 

The distribution of phenotypic values of a large number of off- 
spring of phenotype X is given by the normal distribution func- 
tion: 

1 f(y) = ~ e-(x- y)2/(2 a z) (18) 

and the economic value (P) of the offspring is given by: 

P= S P(y)f(y)dy. (19) 
y =  - o o  

Solutions for the integration are given in the Appendix. 
Appropriate values for x' and a~,, can be substituted in, 

according to whether the case involves clones, full-sib families or 
half-sib families, and varying values of h~ and h i. This was done 
for various P(y). 

The following cases were considered in all cdmbinations: 

clones, pair-crosses, half-sib families; 
various h~ values in range 0.2 1; 
various ho 2 values in range 0.05-1; 
various X values in range -3.5-3.5. 

Separate plottings of/5 versus X were made for clones, 
full-sibs and half-sibs,/tnd individual graphs were made for the 
various profit functions covering the range of ho 2 for a given h~ 
and the range of hp 2 for a given hZo. 

Results 

For the linear profit function, the expression for /5  duly 
simplifies to a straightforward linear function of X: 

/5 = c y ( ~ chp X )  (20) 
namely, the product  of c and the expected genotypic 
value for phenotype X. 

For  the stepwise profit function,/5 values are graphed 
in relation to X, for selected combinations of hp 2 and ho z, 
and for clones, full-sib families and half-sib families 
(Fig. 1). This confirms that as heritabilities get lower, the 
non-linear component in the relationship of P on X be- 
comes less and less, which holds with respect to both h~ 
and ho 2 . Also, the non-linearity for given hp 2 and h 2 values 
is less marked for full-sib families than for clones, and 
even less for half-sibs, although differences between cate- 
gories in t5 curves are much less marked with the lower 
heritabilities. 

For the 'normal '  profit function with high h i and X 
values around the mean, clones have higher/5 values than 
full-sibs which, in turn, have slightly higher values than 
half-sibs (Fig. 2). For  the combination of extreme X vaL 
ues and high h i ,  however, the ranking of clones, full-sibs, 
and half-sibs for /5  is reversed. For  low h 2, the impact of 
ho ~ is much reduced (Fig. 3) and the differences between 
the classes are very minor. For  the case X = 0 ,  and n =  1 
and/or h~--+l, Fig. 4 shows the/5 values in relation to h 2 
for the three classes. This underscores how the profit 
advantages of clones over sexually propagated material 
depend strongly on ho 2 being high. The greatest advantage 
of clones over full-sibs under the model is 22% and over 
half-sibs it is 32%. 

Discussion 

Choice of profit fimctions 

The types of non-linear relationships considered were 
chosen arbitrarily, but they are both plausible situations 
that may arise for different traits. 

The stepwise function [Eq. (15)] relates to the case of 
cull-versus-acceptability thresholds, which are a common 
commercial reality. The percentile point for the culling 
threshold can obviously vary widely, but there seems to 
be no reason to believe that such variations would ~tlter 
the conclusion that low heritabilities and genetic segrega- 
tion both sharply reduce the non-linearities with respect 
to parental worth. This function can be regarded as a 
limiting case among monotonic profit functions. Plausi 
ble cases among the other monotonic functions would be: 
multi-stepped functions or roughly sigmoidal ones. A sig 
moidal function contains a range in which the relation- 
ship is essentially linear; below this range tends to repre- 
sent outright cull material and above the r a n g e  the 
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Fig. 1. /5 (economic worth of 'off- 
spring') versus X with stepwise profit 
function [Eq. (15)] for clones, full- 
sibs and half-sibs; h~ =0.95, 0.7, 0.4, 
0.2; ha a (heritability in production 
population) = 0.9 ( - - - ) ,  0.6 ( - . - . - ) ,  
0.3( . . . .  ), 0.1 ( ). F o r  h~=ho2 = 1 
in the case of clones, the original 
profit function [Eq. (15)] holds 
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Fig. 2. /5 versus X with normal-dis- 
tribution profit function [Eq. (17)] 
and h~=0.9 for clones, full-sibs and 
half-sibs, respectively; h2=0.9( - - - ) ,  
0.6 ( . . . . .  ), 0.3 ( . . . .  ), 0.1 ( - - )  

marginal worth for increasing metric value becomes neg- 
ligible. Since the stepwise function [Eq. (15)] represents 
such an extreme case, the finding that a linear index is a 
good approximation with low heritabilities should hold 
well for almost any plausible monotonic  function. Indeed, 
with many  profit functions that are likely to exist, the 
finding should extend to appreciably higher heritabilites. 

The normal-distribution profit function was chosen 
to address the case of where any departures from the crop 
mean tend to be adverse in themselves. Not  only is it 
mathematically convenient to address but it also has an 

economic plausibility. Obviously, the base-line could be 
set at other than zero economic worth - should it exceed 
zero, the relative advantages of clonal propagat ion could 
be reduced for given heritabilities, and if it were negative 
the advantages would be accentuated. 

Genetic model assumed 

An additive genetic model has been assumed. For  clonal 
situations in themselves, it is immaterial  to this study 
whether gene effects are additive or non-additive. In sex- 
ually produced offspring, however, non-additive gene ef- 
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fects will make the appropriate heritabilities lower than 
those that would apply to clones. Hence, for a given 
candidate population, comparisons among clones and 
families for the impact of non-linearities in /5 must, in 
effect, be based on lower heritabilities in the families. The 
full details of the comparative expectations are complex, 
but the consequent differences in the relationships will 
depend on the type of family involved (full-sib families 
differing from clones less than half-sib families), the mag- 
nitude of non-additive gene effects relative to additive 
ones, the nature of the non-additive effects (dominance or 
various classes of epistasis) and the mode of evaluating 
candidates (clonal tests, progeny tests or selecting indi- 
viduals). These impacts depend primarily on the family 
coefficients of relationship being less for the various non- 
additive gene effects than for additive ones. Of course, if 

2 2 % >aA (aZ=purely additive genetic variance), then 
clones have a theoretical advantage for any situation 
where directional selection is indicated. 
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Values of h i and ho z can differ for various reasons. 
Where clonal or progeny tests are involved, h 2 will tend 
to exceed h 2, hence the higher ranges considered for h~. 
For clonal tests, where genetic segregation does not arise, 
h~ will tend to be higher than in progeny tests if test size 
is fixed, even with the purely additive genetic model. 

General importance of non-linearities 

The profit relationships have been studied over a range of 
3.5 standard deviations of X about the mean in the 
parental generation (2). This range embraces roughly the 
truncation points for 1:4500 selection for selecting clones 
or selecting prospective (full-sib) families on the basis of 
parental values ( a ~ -  a 2 -~g/hp in either case). For half-sib 

�9 " 2 1 2 2 2 1 2 2 families (a x =xao/hv), or full-sib family tests (or =uro/hv), 
this would represent much more intensive selection (It 
may be noted that while selection of individuals rather 
than clones or families, as such, may involve heavier 
culling, it will also tend to be associated with lower he.) 
The implications of non-linearities, however, must be 
considered in the typical context of selection for several 
traits which are likely to have differing profit functions. 
For any one trait, given an appreciable intensity of selec- 
tion, the candidates of serious interest can be expected to 
embrace only a limited part of the range of metric varia- 
tion. Over such a limited range, the non-linearity will be 
less pronounced than over the total range. Selection in- 
tensities with respect to individual traits will not normal- 
ly be particularly high, and occasional selections that are 
extreme with respect to individual traits are easily identi- 
fied as such. It should be readily possible to infer whether 
the selection-index ratings in such instances would be 
seriously biased by non-linearities. 

For many practical purposes the assumption of linear 
economic worth appears to be highly robust, at least 
where the profit functions are monotonic - indeed, to 
incorporate P (y) directly in the index can grossly over-ac- 
commodate departures from linearity. In this light some 
of the selection index restrictions look questionable, de- 
spite their intuitive appeal. This is because most restric- 
tions implicitly assume threshold effects for P in relation 
to X, which have been shown not to hold in the face of 
low heritabilities and genetic segregation if P values re- 
late to individual offspring. 

There is the question of how to cross-reference eco- 
nomic weights between traits with different types of profit 
function. Where quadratic functions are involved, some 
modifications of the Smith-Hazel solution, e.g. incorpo- 
rating quadratic index terms (Wilton et al. 1968), use of 
square-root transformation of phenotypic values or use 
of partial derivatives of profit functions evaluated for 
expected means after selection [Itoh and Yamada 1988; Eq. 
(21)], can provide a quasi-linearity and meet the need for 
effectively different relative index weights according to 
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selection intensity. In fact, for the heritabilities and other 
conditions considered, the expected gains in efficiency 
relative to straightforward linear solutions were very mi- 
nor, which accords with the results shown in Fig. 1. For 
more complex profit functions there seems to be no ready 
solution, and it seems appropriate to explore genetic 
gains under alternative index weightings and to translate 
them into economic returns under alternative selection 
intensities using Eq, (19). However, unless heritabilities 
are high and non-linearity is severe, the relative economic 
benefits in different traits can, for a given set of index 
weights, be essentially independent of selection intensity. 
This exploratory approach amounts to sensitivity analy- 
sis, which is advisable in any event for multi-trait selec- 
tion. 

The very marginal gains that would often accrue from 
explicit accommodation of non-linear profit functions 
must be viewed in the perspective of frequent uncertain- 
ties as to the relative economic weights among traits. 
More important, perhaps, than the fine details of optimis- 
ing selection indices are the implications for integrating 
breeding and management for traits that show thresholds 
in profit functions. Where heritability is low, the scope for 
gains purely from genetic improvement is likely to be 
limited, unless selection is concentrated on the particular 
trait. Improved management practice then becomes dou- 
bly attractive, both to reduce directly the proportion of 
culls and to raise the 'offspring' heritability whereby the 
non-linearity can be expressed in P and exploited. 

Corrective mating can be used to achieve a desired X 
value using parents that diverge widely from it. The ben- 
efits depend strongly on/5  values being higher for mid- 
parent X values than the average P values for the dis- 
parate parents. This will, in turn, require certain types of 
non-linear profit function, e.g. intermediate optimum 
[Eq. (16)], law-of-diminishing-returns or stepwise [Eq. 
(15)]. However, it is clear from this study that the manifes- 
tation in 15 of the benefits of non-linearity is strongly 
attenuated by both genetic segregation and low heritabil- 
ities. If the candidate population comprises inbred or 
strongly differentiated lines, then corrective mating can 
exploit favourable genetic dominance effect. 

It is important to note that the profit function was 
deemed to apply at the level of individuals. Should it 
apply at the level of the population mean, the following 
equation obtains: 

P= P(y) (y~h 2 X ax), (21) 

X being the phenotypic mean for the selections made in 
the candidate population. In this case, restricted indices 
and corrective mating would be far better based, since/5 
can show marked threshold effects with respect to X, 
even with low heritabilities and genetic segregation. 

Note also that non-linearity of economic worth was 
considered in relation to traits that are economic in their 

own right. This is not the same as when measured traits 
contribute non-linearly as components of economic 
traits, or when intercorrelations between different eco- 
nomic traits are inherently non-linear. 

Implications for clonal populations 

The advantages that can accrue from the genetic unifor- 
mity of clonal systems (or other systems based on genetic 
uniformity) clearly depend on high heritabilities, al- 
though for single-clone populations the heritabilities in 
the 'parental' material can become immaterial for the 
normal-distribution function. The advantages of unifor- 
mity fall into two categories. First, where an intermediate 
optimum exists, the genetic uniformity increases maxi- 
mum economic worth of the population, particularly 
when broad-sense heritability is high (Figs. 2 and 4). (In 
fact, the advantage of clones should still hold for multiple 
optima, although it would presumably depend even more 
on high heritabilities.) Second, where profit 'plateaus' be- 
yond a threshold value for the metric trait, an optimum 
economic worth with respect to that trait can be ap- 
proached with a modest culling level, which would allow 
considerable scope for selecting for other traits before 
economic gains in the profit-threshold trait become sig- 
nificantly reduced. In this situation, sequential cutting or 
the use of independent culling levels could become very 
attractive relative to index selection. 

The dependence of certain economic advantages of 
clonal systems on high broad-sense heritability has im- 
portant implications for crop management. It places at a 
premium systems that minimise phenotypic variability 
between individuals. It fits, then, that clonal systems have 
found most favour under very intensive cultivation, 
where the crop environment is controlled so as to pre- 
clude most of the 'noise' variation. 

Competitive influences, such as typically occur with 
canopy closure in a forest stand, can clearly amplify the 
plant-to-plant variation for growth variables. Where ef- 
fects of genotype are being amplified thus along with 
those of environmental differences, the advantages of 
clonal systems are likely to become greater than have 
been indicated by the calculations reported here. 

Conclusions 

With heritabilities less than around 0.4, in either the can- 
didates or the production population, the economic 
worth of"parents' should closely approximate to a linear 
relationship with parental phenotype for almost any like- 
ly monotonic profit function relative to phenotypes of 
individual offspring - in most cases, the approximation 
would hold with appreciably higher heritabilities. 

Where profit functions relate to individual offspring, 
the economic advantages of such features as non-linear 
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terms in selection indices, selection index restrictions, in- 
dependent  culling levels or corrective mat ing are likely to 
be very limited, except under high heritabilities and either 
clonal p ropaga t ion  or crossing between inbreds. 

However,  where the profit  functions relate to the 
produc t ion-popula t ion  mean, such departures from a lin- 
ear index solution may  be worthwhile, even with very low 
heritabilities and genetic segregation. 

The economic benefits of genetic uniformity of clonal 
crops or crosses between inbred lines depend strongly on 
achieving high heritabilities within the product ion popu- 
lation. 
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Appendix 

O. Garcfa 

Forest Research Institute, Rotorua, NZ 

The solutions of Eq. (19) for the various profit functions 
[Eqs. (14)-(17)] are: 

1. Linear [Eq. (14)] 

P=cy+q~cXhp+q 

2. Stepwise [Eq. (15)] 

where F(S) is the standardised normal cumulative distri- 
bution. F(S) can be obtained from tables or calculated 
from approximation such as F (S),.~ 1 - ~  (1 + 0.196854 S + 
0.115194S 2 +0.000344S3+0.019527S4) --4-for S_>0; F(S)= 
1--F(--S) for S<0  (Abramowitz and Stegun 1970; Eq. 
26.2.18) 

'Normal' [Eq. (16)] 

t exp[ 1(Y-d) 2] 
/5 = x/2 ~z (a 2 + 1) 2 ~ +~ay z] 

'Smooth' profit functions 

P,~,P(y)+�89 a 2 

where P"(y) is the second derivative of P(y). 
This is exact for polynomial P(y) up to 3rd degree. 
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